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1. Phys. A .  Math. Gen. 27 (1994) 4497-4504. printed in the UK 

Coadditive differential complexes on quantum groups and 
quantum spaces 

A A Vladimirovtf 
Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, 
Moscow region 141980, Russia 

Received 28 February 1994 

Abstract. A regular way to define m additive coproduct (or cooddirion) on q-deformed 
differential complexes is proposed for quantum groups and quantum spaces Elated to the Hecke- 
type R-matrices. Several examples of braided coadditive differential bialgebm (Hopf algebras) 
are presented. 

Recently, an additive version of coproduct (or rather coaddition) has been observed in 
various quantum (q-deformed) algebras [1-3]. While in ordinary Lie algebras this additional 
algebraic structure is quite natural and almost trivial, in a q-deformed situation it requires 
non-trivial braiding d e s  [4], thus making the Corresponding quantum algebras braided 
coadditive bialgebras (actually, Hopf algebras). 

A related and very interesting question is a possible bialgebra structure of differential 
complexes, i.e. the concept of differeniial bialgebras [5,6]. Brzezinski [7] has shown that 
the existence of a bialgebra of this type implies the bicovanance of the corresponding 
differential calculus [&lo]. 

Therefore, one’s interest in the braided coaddition in differential complexes could be at 
least tbreefold: 

(i) it is interesting by itself, as an additional algebraic structure; 
(ii) it can provide us with a purely Hopf-algebraic criterion for selecting q-deformed 

differential calculi; and 
(iii) it might play the role of a ‘shift’ in the physical interpretation of the corresponding 

quantum space. 
In [ I  11, among other examples, several coadditive differential bialgebras have been 

obtained. The aim of the present paper is to give a systematic approach to this problem 
for quantum algebras generated by the R-matrices of the Hecke type (for instance, the 
GL, (N)  type [12]). Proceeding in this way, we recover the results of [ I l l ,  describe 
a regular (and very simple) method to prove consistency (associativity) of the relevant 
braiding relations and find a braided coadditive differential Hopf-algebra structure on the 
corresponding quantum group. 

This paper has developed from my attempts to intelpret equations (47) and (48) (see 
below) determined by Isaev [ll]. I appreciate his contribution to the present work. 

t Work supponed in pm by the Russian Foundation of Fundamental Research (grant no. 93-02-3827). 
$ e-mail alvladim@thrunl.jinr.dubna.su 
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The principal ideas of this paper can be best explained by considering the well 
accustomed quantum hyperplane 

Rizxix2 = qxzxi. (1) 

We adopt the following notation [11,131: 

(2) Pl2RI2 5 k12 R i ? ~  = R' R-' i? ¶ - I  = - 4  - q - g ' h  

and also, for any a, 

a1 ' a  a2 E a' a, a" a @ l - a  I @ a = Z .  (3) 

For instance, the Yang-Baxter equation and the Hecke condition for the R-matrix are now, 
respectively, 

RR'R = R'RR' (4) 

and 
- 

R - R = h  Or R ~ = I + ~ R .  (5) 

Ow aim is to suppress explicit numerical indices (numbers of the corresponding auxiliary 
spaces) in formulae like (1) in order not to confuse them with others that we shall need 
later. 

In reality, the whole differential complex [ 141 on the quantum hyperplane (1) is defined 
by 

Rxx' = qxx' 
R d r  x' = q x  dx' 
R dx dx' = -g dx dx', 

Adding formally to this set of equations an extra one 

dx x' = q T x  dr' - hqdxx'  (7) 

which follows trivially from the second line in (6), one can recast (6) and (7) into matrix 
form 

x2x ;  = ylzxlx; (8) 

where 

\ ,  \ .  . - R /  

where the dots are zeros, and the meaning of the numerical indices in (8) is not the same 
as in (1). It should be noted that the explicit form (9) chosen here for Ylz is by no means 
unique. 
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Now we are to employ the matrix representation (8) for demonstrating that the 
differential complex (6) admits coaddition of the form 

A ( x )  = x @ 1 + 1 @ X  x + f  A(&) = br + d.? (10) 

or, in short notation, 

A ( x )  = x t f .  (11) 

From earlier papers on the subject [ l ,  111, we learn that this can only be possible when 
a non-triviaI braiding map W : d @ Q + Q @ f2 is used to commute elements with and 
without a tilde from two independent copies of our differential complex Q. Explicitly, 

(1 @ a ) @  @ 1) Zb = " ( U  @ b) .  (12) 

In ( S ) ,  a natural ansatz for the braiding is 

a x ;  = zlzxlk; (13) 

where 2 is a 4 x 4 matrix whose elements may themselves depend on R. 

This leads to 
The first restriction on Z is caused by the graded nature of the differential complex (6). 

Furthermore, the result of external differentiation of (13) must itself be consistent with 
(13). Taking into account d2 = 0 and the graded Leibnitz rule, we come to 

a = @ + d  y = 6 - v  & L = @ + v .  (15) 

The next step is to ensure the key property of A ,  i.e. 

A ( x z ) A ( x ; )  = YizA(xi)A(x;) .  (16) 

This boils down to verification of 

h X l +  x z n ;  = YlZflx;.+ y12x1n; 

which, with the help of (13), transforms to 

IY12ZZI + (YIZ - Z 1 Z ) ~ I Z  - 11xzn; = 0. (18) 

We have to put the expression in square brackets to zero. This results in the following new 
constraints: 

@ = (6+ 1)qR ( V  + 1)(R + ? I  = 0. (19) 
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Finally, we must guarantee that our braiding (13) obeys so-called hexagon identities 
[I51 or, equivalently, that our commutation rules for elements with and without a tilde are 
associative. To do this, we perform a reordering 

23x;x; + X I X ; K ;  (20) 

in two different ways using (8), (13) and 

n;x; = z;,x;2; (21) ! I ,  - 
XZXl - y;zx;x;) 

where Y' and Z' mean that a substitution R i R' in the corresponding elements of Y and 
Z has to be carried out. Following this strategy, we finally obtain 

Y;2zIIz;I = z z z ; 3 Y l z .  (22) 

(A similar relation for Y, 

Y;zY13Y;3 = Y23Y;3Ylz (23) 

which expresses the associativity of the original algebra (6), is readily verified.) 
Rewriting the matrix relations (22) in the component form, we immediately encounter 

R'(B + v)S' = S(B' + v')'iT = 0. (3) 

The only way out is to nullify 6 or ,!? + v. Let us first consider the latter possibility. Then, 
due to (19) 

v = -p (B - l ) (R+( i )  = 0 B + 6  68 (25) 

and the matrix 2 1 2  becomes 

The remaining relations hidden in (22) yield 

pk% = k"iTp' BB'R = R'BP' 

(26) 

The first of these is identically true whereas the second, together with (E) ,  produces two 
solutions for B 

B = @ R  or @=qx (28) 

and, consequently, two possibilities for Z 
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In explicit form this reads: 

The other solution of (24), S = 0, produces matrices zt; and 2;) instead of (29). 
This evidently corresponds to changing the position of a tilde (j x . i  U x )  in (13), 
(30) and (31), i.e. to the inverse braiding transformation V I .  We thus recover the results 
of [ l l ]  and, moreover, prove that they exhaust all the allowed braiding relations within 
the homogeneous ansatz (13). It should also be stressed that representations, such as (8) 
and (13), are extremely convenient for proving associativity (respectively consistency) of 
appropriate multiplication or braiding relations. 

Now we proceed to the case of the braided matrix algebra B M , ( N )  116,171 with the 
generators { 1, U; ), forming the N x N matrix U ,  and relations 

RZIUZRIZUI = uiRzi~zR12.  (32) 

The corresponding differential complex is described in [18,19]. In our notation (note 
U ,  U), it reads 

RuRu = uRuR 
Ru R du = du RuR 
Rdu  Rdu  = -du R d u z  

(33) 

(unlike (6), there are no primes in these equations). The appropriate coaddition is also 
known (see [2] for the BM,,(N) itself and 1111 for (33) as a whole). Here, we wish to 
reproduce the results of [ 111 through the matrix formalism developed in the previous section. 

Let us rewrite (33) in the form 

PZRW = VIZPIRPZR (34) 

where 

and try to introduce the braiding relations 

6zR1"i = W I Z P I R ~ R  
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which make 

A ( 9 )  = rp + @ (37) 

a consistent coproduct. From (34) and (36), we deduce 

W I Z P I R ~ R  t $@'?I = V I ~ W Z I ~ , C Z R @ I R ~  t VizpiRGizR. (38) 

With the help of the Hecke condition (5), we get 

(VIZ'(YZI - 1 ) ~ z R P t  + [hl.izWzi t (VIZ - K'iz)Pizl~zR@iR = 0. (39) 

A solution is 

Another possible braiding is 

6Rrpi = V1291R&27i (41) 

inspired by the following equivalent version of (34): 

~ R R  = Vz~rp~RfiX. (42) 

Of course, this corresponds to the inverse braiding map with respect to (36), (40). 
Another pair of mutually inverse solutions can be obtained if one represents (33) as 

In this case, both 

ijzR711 = R v I R ? z ~ ; I  (45) 

and 

i72Rv1 =%iRizVz  (46) 

are consistent braiding relations. Associativity of (36), (41), (45) and (46) (i.e. identities 
such as W I Z W ; ~ V ~ ~  = V.3W13W;2) and their compatibility with the Leibnitz rule are easily 
confirmed. 
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In the component form, (36) and (45) look, respectively, like 

liRu = RuRliR 
d i  Ru = RuR dP R f hduRliR 
l i R d u = X d u R i R  
dGRdU=-?iduRdliR 

PRu = RuRliR 
dli Ru = RuRdli R + h R d u  Rli 
P R d u =  RduRliX 
d P R d u = - R d u R d i i X  

I (47) 

where equations (41) and (46) are obtained from these via U c1 l i .  We recover the 
corresponding results given in [ll]. 

Consider, at last, the familiar matrix quantum group 

R12FT2 = T2FR12 149) 

which also has a braided coaddition [3]. Its differential complex is known too [20]. In the 
notation (2), (3) it looks like 

RTT' = TT'R 
R d T T ' =  TdT'?i 
R dT dT' = -dT dT'X 

Let us show that the algebra (50). as a whole, admits a coaddition 

A(0) = 0 + 6 
B E ( & )  

In reality, equation (50) is easily rewritten as 

In complete analogy with the preceding example, one finds that the mutually inverse braiding 
relations 

620; = T2101g;R (53) 

6 0 ;  = N12e,6;fi (54) 

$26; = Rt141NT2 (55) 

satisfy all the requirements. If, otherwise, equation (50) is recast into the form 

with c being a row, 
produced: 

= (T, dT), then the following pair of mutually inverse braidings is 
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In the component form 

?TI = RT?R 
d F  T' = i?T dp '  R 
?dT' = R d T  ?'R + hT d P R  
d?dT' = -??dTd?'R 

1 d?dT'= -RdTd?'i?. 

? T I =  RTPR 
d? T' = R T  d?'?? 
F d T '  = R d T  ?'R +hRTd?' 

I 
Two other sets are obtained from these by 

All the above examples lead us to the conclusion that the braided coaddition appears 
to be quite a natural algebraic structure for the differential complexes on the quadratic 
quantum algebras generated by the Hecke-type R-matrices. The corresponding (braided) 
counit obeys ~ ( 1 )  = 1 and equals zero on other generators. Moreover, a braided antipode 
is easily introduced 

cf T. 

S(1) = 1 S(a) = -a S(da) = -da (a = x,  U ,  T). (60) 

Consequently, all the braided coaddifive differential bialgebras considered in this paper are, 
in fact, braided Hopf algebras. 

(59) 
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